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Abstract. This paper presents a modified optimal control model of drug
scheduling in cancer chemotherapy and a new adaptive elitist-population
based genetic algorithm (AEGA) to solve it. Working closely with an on-
cologist, we firstly modify the existing model, because the existing equa-
tion of the cumulative drug toxicity is not consistent with the clinical
experience and the medicine knowledge. For exploring multiple efficient
drug scheduling policies, we propose the novel variable representation –
the cycle-wise representation; and adjust the elitist genetic search oper-
ators in the AEGA. The results obtained by the new model match well
with the clinical treatment experience, and can provide much more re-
alistic solutions than that by the previous model. Moreover, it has been
shown that the evolutionary drug scheduling approach is simple and ca-
pable of solving complex cancer chemotherapy problems by adapting the
suitable coding and the multimodal versions of EAs.

1 Introduction

An important target for cancer chemotherapy is to maximally kill tumor cells for
a fixed treatment period. So drug scheduling is essential in cancer chemotherapy.
Martin [6] have proposed the optimal drug scheduling model by the following
differential equations:

dx1

dt
= −λx1 + k(x2 − β)H(x2 − β) (1)

dx2

dt
= u − γx2 (2)

dx3

dt
= x2 (3)

with the initial state xT (0) =[ln(100), 0, 0], the parameters λ = 9.9 × 10−4,
k = 8.4 × 10−3, β = 10, γ = 0.27, η = 0.4, and:

H(x2 − β) =

{
1, if x2 ≥ β
0, if x2 ≤ β

(4)

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1126–1137, 2004.
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where x1 is a transformed variable that is inversely related to the mass of
the tumor. The tumor mass is given by N = 1012 × exp(−x1) cells, and the
initial tumor cell population is set at 1010 cells [6]. The variable x2 is the drug
concentration in the body in drug units (D) and x3 is the cumulative drug
toxicity in the body. Equation (1) describes the net change in the tumor cell
population per unit time. The first term on the right-hand side of Equation
(1) describes the increase in cells due to cell proliferation and the second term
describes the decrease in cells due to the drug. The parameter λ is a positive
constant related to the growth speed of the cancer cells, and k is the proportion
of tumor cells killed per unit time per unit drug concentration which is assumed
to be a positive constant. The implication of the function described in Equation
(4) is that there is a threshold drug concentration level, β below which the
number of the killed tumor cells is smaller than the number of the reproduced
tumor cells, and the drug is not efficient. Equation (2) describes the net increase
in the drug concentration at the cancer site. The variable u is the rate of delivery
of the drug, and the half-life of the drug is ln(2)/γ, where γ is the biochemical
character parameter of the drug. It is assumed that the drug is delivered by
infusion, and there is an instantaneous mixing of the drug with plasma, as well
as an immediate delivery of the drug to the cancer site. These assumptions
represent approximations based on the relative amount of time. It takes for the
aforementioned activities to occur with respect to the total amount of time over
which the treatment is administered. Equation (3) relates the cumulative drug
toxicity to the drug concentration, e.g., the cumulative effect is the integral of
the drug concentration over the period of exposure.

The performance index [6] to be maximized is:

I = x1(tf ) (5)

where the final time tf = 84 days. The control optimization is performed subject
to constraints on the drug delivery: u ≥ 0, and on the state variables: x2 ≤ 50,
x3 ≤ 2.1 × 103.

Cancer chemotherapy is a systemic treatment, so the action of the chemother-
apeutic agent is not restricted to the tumor site. Any of the body organs are
liable to injury. This is on contrast to the localized treatments, such as surgery
or radiotherapy. Therefore, the constraints on the drug concentration x2 and
the cumulative drug toxicity x3 are to ensure that the patient can tolerate the
toxic side effects of the drug. Drug resistance is considered to be a significant
factor in chemotherapeutic failure [3] [7] [9] and it has been shown that the drug
resistant cells are likely to increase as the tumor burden increases [2]. In order
to reduce the likelihood of the emergence of drug resistant cells, the tumor size
is forced to reduce by at least 50% every 3 weeks, so that: x1(21) ≥ ln(200),
x1(42) ≥ ln(400), x1(63) ≥ ln(800).

Many researchers have applied different optimization methods to improve the
results of the drug scheduling model [1] [5] [6] [7] [10] [11]. Among of them, Tan
et al. [10] have proposed the “Paladin-Distributed Evolutionary Algorithms”
approach to solve this problem and got the best-known solutions.
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Through analyzing the experimental results from the existing model, there
are two obvious unreasonable outcomes in the optimal drug scheduling policies:
(i) unreasonable timing for the first treatment; and (ii) three point constraints
cannot improve the efficiency of the cancer treatment. We analyze the reasons
causing these problems and modify the existing model. The newly modified
model is consistent with the clinical experience. The drug scheduling models
are multimodal optimization problems and their feasible solution spaces consist
of several discontinuous subregions. Here we select our novel genetic algorithm
(GA), called an adaptive elitist-population based genetic algorithm (AEGA) [4],
which is an efficient algorithm for multimodal optimization problems, to solve
the modified drug scheduling model. Simulation results obtained show that our
multimodal optimization algorithm AEGA produces excellent drug scheduling
policies in cancer chemotherapy, which match well with results from clinical
treatment experience. The power of the AEGA in obtaining multimodal solutions
for this problem is also demonstrated.

This paper is organized as follows. Section 2 analyzes the problems that ex-
ist in the best-known solutions obtained by the existing drug scheduling model.
Section 3 presents the newly modified model of the drug scheduling for cancer
chemotherapy. Section 4 introduces the automation of the drug scheduling for
cancer chemotherapy through the AEGA. The adaptation and modelling of the
modified model in the AEGA are detailed including the new chromosome rep-
resentation and genetic operators. The experimental results and discussion are
given in Section 4. The paper conclusion is drawn in Section 5.

2 Analysis of the Experimental Results of the Existing
Model

Fig.1-(a) and (b) show the best-known drug scheduling policies without and with
three point constraints respectively, which are explored by Tan et al. [10] using
distributed evolutionary computing software. Through observing the experimen-
tal results obtained by the existing drug scheduling model, there are two obvious
unreasonable problems:

• unreasonable timing for the first treatment; and
• three point constraints cannot improve the efficiency of the cancer treatment.

In the 84 days treatment, the two best-known control policies for the drug
are that it first gives drug on the 41th day under the model without the three
point constraints, and on the 18th day under the model with the three point
constraints. This is the first unreasonable problem because these drug policies
obviously do not correspond with the clinical experience. In the clinical treat-
ment, the general policy for efficiently reducing the tumor cells is that we should
give a multi-dose of the drug rather than a normal dose on the first day. Since in
the early days of the treatment, the patient’s body has the strongest metabolism
capability of the drug, and also the drug resistance of the tumor cells is the
weakest at this time. So giving the multi-dose drug at this time can get the best
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Fig. 1. The best-known solutions obtained by the existing drug scheduling model. (a):
without the three point constrains; (b): with the three point constrains.

efficiency of the cancer treatment: to kill maximal tumor cells with minimal drug
toxicity. According to this clinical experience, we can guess that an efficient drug
scheduling policy should include the scheme that gives the multi-dose drug on
the first day in the cancer treatment.

The second problem is that three point constraints cannot improve the effi-
ciency of the cancer treatment. In the previous research works, the best-known
performance index under the model with the three point constraints is 17.476
(corresponded to a final tumor size of N = 2.57×104 cells). It is not better than
the best-known performance index under the model without the three point
constraints 17.993 (corresponded to a final tumor size of N = 1.53 × 104 cells).
This means that the three point constraints cannot improve the efficiency of the
cancer treatment, but contrary to expectation, they reduce the overall efficiency
of the drug chemotherapy. However, as described above, the aim of the three
point constrains is to get more efficient drug scheduling policies. Because the
drug resistance of the tumor cells increase with time and the emergence of drug
resistant cells is thought to be a significant factor in chemotherapeutic failure
[3] [7] [9]. In order to reduce the likelihood of the emergence of drug resistance
cells, the tumor cells are forced to reduce by at least 50% every 3 weeks [5]. So
these three point constraints should help to get more efficient drug scheduling
policies for the cancer chemotherapy.

We believe the reason causing these problems is that the existing drug
scheduling model is not consistent with the clinical experience. So we modify
the existing model in the next section. The newly modified model can over-
come the above two problems and its solutions are consistent with the clinical
experience.

3 The Modified Model of the Drug Scheduling for Cancer
Chemotherapy

The existing model [6] of cancer drug scheduling consists of three equations.
Equation (1) can accurately describe the drug efficiency in the treatment period.
Equation (2) also correctly describes the change process of the drug concentra-
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Fig. 2. The change processes of x3 under the existing and modified models respectively.

tion in the body. But for Equation (3), the variable x3 does not decrease in the
whole cancer treatment, because on the right-side of Equation (3), the drug con-
centration x2 is always not smaller than 0. Equation (3) may not be appropriate
since it has not considered the metabolism process of the drug in the body. To
clearly describe our analysis, we will use some experimental results to explain
this problem.

In Fig.2-(a), we consider an additional test drug scheduling policy, which is
giving 10D dose drug on the first day and not giving any drug in the later days.
Fig.2-(b) shows the change process of the cumulative drug toxicity, x3, in the
fixed treatment period under the existing model. We can see that x3 increases for
the first few days due to the drug given on the first day, then x3 almost remains
constant in the later days. This means when the patient does not take the drug
anymore, the drug toxicity still remains a constant value in the patient’s body
for the rest of the period. This does not correspond with the clinical experience.
Because when the drug concentration x2 decreased and tended to 0, generally
the cumulative drug toxicity x3 will be decreased through the metabolism and
clearance by the liver and kidney in the body. To correct the above unreasonable
model and accurately describe the change process of the cumulative drug toxicity
x3 in the body, with the help of an oncologist we have modified the third equation
in the previous differential equation system as follows:

dx3

dt
= x2 − ηx3 (6)

Equation (6) describes the net change of the cumulative drug toxicity x3 per
unit time. In the right-hand side of this equation, the first term x2 describes the
increase of the cumulative drug toxicity x3 due to the drug concentration x2,
and the second term −ηx3 describes the decrease in the drug toxicity due to the
metabolism in the body. It is assumed that the metabolism speed of the drug
is directly proportion to the amount of the current cumulative drug toxicity x3.
The parameter η is a positive constant related to the metabolism speed of the
drug in the body.

Here we combine Equation (6) with Equations (1) and (2) to construct a new
drug scheduling model. To demonstrate the difference of both models, we still
use the additional test drug scheduling policy (Fig.2-(a)) to test the model and



Evolutionary Drug Scheduling Model for Cancer Chemotherapy 1131

analyze its results. The change processes of the variables x1 and x2 in the fixed
treatment period (84 days) under the two models are the same. This means the
new model also can correctly describe the change processes of the variables x1
and x2. Fig.2-(c) shows the change process of the cumulative drug toxicity x3
in the fixed treatment period under the new model. The variable x3 increases in
the first few days after giving the drug on the first day, then it decreases to 0
along with the drug concentration x2 decreasing to 0. The new drug scheduling
model can correctly describe the metabolism process of the drug toxicity in the
body.

Because we proposed the new Equation (6) to control the variable of the
cumulative drug toxicity, x3, the previous constraint x3 < 2100 is not suitable.
We use the two best-known solutions under the previous model without and with
the three point constraints, to evaluate the new constraint about the variable x3.
Here we set the parameter η = 0.4 in Equation (6) and the maximal cumulative
drug toxicity of these two best-known solutions are 99.851 and 99.999. These two
maximal cumulative toxicities are too closed and all smaller than 100. According
to this fact the new constraint for x3 can be given as follows: x3 < 100.

4 Evolutionary Drug Scheduling Model Via AEGA

In this section we use our adaptive elitist-population based genetic algorithm
(AEGA), which is an efficient multimodal optimization algorithm [4], to im-
plement the automation of the drug scheduling model for exploring multiply
efficient drug scheduling policies. Why do we select a multimodal algorithm to
solve this optimization problem? Because this problem includes some constraints,
the feasible solution space consists of many subregions and these subregions are
discontinuous. It is difficult for global optimization algorithms to search all sub-
regions and explore a global optimum. We want to use a multimodal optimization
algorithm to get multiple optima from all the subregions. On the other hand,
in the clinical treatment, a doctor expects to select a different drug schedul-
ing policy for a different patient. So we can use the multimodal optimization
algorithm to solve the drug scheduling model, and get multiply efficient drug
scheduling policies of the clinical treatment for the doctor to choose depending
on the particular conditions of the patient under the treatment.

4.1 Variable Representation

For the drug scheduling problem in cancer chemotherapy as described in Section
1, there are 84 control variables to be optimized, which represent the dosage
levels for the 84 days. The drug scheduling model is a high dimensional and
multimodal optimization problem. Due to the large number of variables and fine
accuracy involved, several representation schemes of variables in the evolutionary
optimization were investigated. For example, some researchers used a pair-wise
variable representation to reduce the complexity of variables. The information
of dosage level and start-day are coded as variable pairs in such representation,
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e.g., (30.5, 28) meaning the starting of drug schedule from the 28th day with
the dosage level of 30.5D. However, the pair-wise variable representation is only
useful when the given drug doses are not changed many times in the treatment
period. For example, the best-known solution obtained by the previous model
without the three point constraints is {(0, 0); (32.1, 41); (13.484, 43); (13.21, 83)}.
The changes of the drug doses occur only 3 times in this solution. But in the
clinical treatment, generally the drug schedule is a repeated policy (e.g., giv-
ing drug every two days). For such a case, the pair-wise variable representation
will become more complex. Moreover, in EAs with the pair-wise variable repre-
sentation, the existing evolutionary operators can only be implemented on the
pair-wise variable representations, which consist of a constant number of variable
pairs [10]. This will reduce the scheduling freedom and the efficiencies of EAs.

Here we propose a new variable representation—cycle-wise variable repre-
sentation to accurately and efficiently describe the drug scheduling policy in a
chromosome.

Definition 1: Due to the large number of variables and fine accuracy in-
volved, the drug scheduling variable in the fixed treatment period defined by

Variable Representation := {[C|D]∗|[D(DC)]∗}
C := [ci]∗

D := ki × di, · · · , dj

where

ci is the drug dose on each day;
ki is the number of cycles;
di, · · · , dj is the repetend;
∗ represents the repetition of the structure that is located in the
front square bracket, but the values can be different;

is called a cycle-wise variable representation of the drug scheduling model.
By Definition 1, the cycle-wise variable representation includes two parts: a

front and a cyclic parts. The front part is [C|D]∗. It describes the drug doses in
the initial treatment days. The cyclic part is [D(DC)]∗. It consists of the number
of cycles ki and the repetend (di, · · · , dj). The cycle-wise variable representation
is very suitable for the drug scheduling problem. Because in the first few days
of the treatment period, the patient’s body may not have adapted to the drug,
but it is important to kill as much tumor cells as possible, the drug doses will be
adjusted day by day. We use the front part to represent the drug doses in this
initial period. Then when the patient’s body gradually gets used to the drug, the
drug administration schedule will follow a fixed cycle and a fixed dose pattern,
which is suitably represented by the cycle-part.
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Table 1. The multi-point crossover operator for the cycle-wise variable representation

Parents:
{94.92, |r1 (8 × 10.8), |r2 (74 × 10.8)}
{136.98,|r1 (3 × 0), 41.56, (3 × 0), 35.85,|r2 (18 × (3 × 0), 39.58), 0, 12.34 }
Offspring:
{136.98,|r1 (8 × 10.8), |r2 (74 × 10.8)}
{94.92, |r1 (3 × 0), 41.56, (3 × 0), 35.85, |r2 (74 × 10.8)}
{136.98,|r1 (3 × 0), 41.56, (3 × 0), 35.85, |r2 (74 × 10.8)}
{94.92, |r1 (8 × 10.8), |r2 (18 × (3 × 0), 39.58), 0, 12.34 }
{136.98,|r1 (8 × 10.8), |r2 (18 × (3 × 0), 39.58), 0, 12.34 }
{94.92, |r1 (3 × 0), 41.56, (3 × 0), 35.85, |r2 (18 × (3 × 0), 39.58), 0, 12.34 }

4.2 Elitist Crossover Operator for the Cycle-Wise Variable
Representation

Here we combine the standard multi-point crossover operator with the adaptive
elitist-population search techniques to construct the adaptive elitist-population
based crossover operator for the cycle-wise variable representation. Let r1 and r2
be the crossover points in the front and the cyclic parts respectively of the two
parents selected randomly from the population. The offspring are produced by
taking all the combinations of the 3 segments (separated by r1, r2) of the parents’
representations. In Table 1, the multi-point crossover operation generally can
generate 6 offspring to improve the successful rate in the search process. Then
two better solutions, which satisfy all the constraints, are selected from the
parents and their offspring for the next generation.

Before we carry out the crossover operation, the adaptive elitist-population
search technique incorporated in the crossover operator will delete the worse
one from the two selected parents to reduce the population’s redundancy, if they
are located in the same optimal attraction. Of course, if this is carried out,
no crossover will be performed. According to this principle, if the two parents
have the same cyclic parts and similar front parts (smaller than the distance
threshold σs), and the relative optimal directions of their front parts are face to
face or one-way, the elitist operation will conserve the better one of these two
parents for the next generation and delete the other one. Here we only use the
front parts but not the whole cycle-wise representation to determine the relative
optimal directions of both the parents to reduce the computation complexity of
the algorithm.

4.3 Elitist Mutation Operator for the Cycle-Wise Variable
Representation

In an elitist mutation operator, the basic mutation works as follows: for a ran-
domly chosen position in the cycle-wise representation, replace its value with
another randomly chosen value (not the same as the one to be replaced) with



1134 Y. Liang, K.-S. Leung, and T.S.K Mok

Table 2. The one-point mutation operator for the cycle-wise variable representation

Parent:

{136.98, (3 × 0) , 41.56, (3 × 0), 35.85, (18 × (3 × 0), 39.58)};

Offspring:

(1): {136.98, (2 × 0), 20.5 , 41.56, (3 × 0), 35.85, (18 × (3 × 0), 39.58)}, or

(2): {136.98, (3 × 0), 41.56, (3 × 0), 35.85, (18 × (3 × 0), 27.64 )}, or

(3): {136.98, (3 × 0), 41.56, (3 × 0), 35.85, (14 × (4 × 0), 39.58), (2 × 0) }.

certain mutation probability. For example, in Table 2, the fourth point of the
parent is changed from 0 to 20.5 to generate its offspring (1); or the last value
of the last cyclic part of the parent is changed form 39.58 to 27.64 to generate
its offspring (2); or the number of cycles in the inner cycle of the last cyclic part
is changed from 3 to 4 to generate its offspring (3).

The adaptive elitist-population search technique in mutation is that when
the parent and its offspring are located in different optimal attractions, they are
conserved together for the next generation to increase the population’s diversity.
For the cycle-wise representation, if the mutation operation is applied to its front
part, and the relative optimal directions of the parent’s and offspring’s front parts
is back to back, the elitist mutation operator will conserve the parent and its
offspring together for the next generation. If the mutation operation is to apply
the cyclic part, the elitist operation will not take place. As a general mutation
operator, the elitist mutation operator conserves the best one of the parent and
its offspring for the next generation.

4.4 The AEGA for the Drug Scheduling Model

In order to successfully explore multiple optimal solutions of the drug scheduling
model, several rules for applying the AEGA are made as follows:

• Use the cycle-wise representation to keep the scheduling freedom and improve
the efficiencies of EAs.

• Use the front part of the cycle-wise representation to check the dissimilarity
of the individuals to reduce the computational complexity of the algorithm.

• Use the adaptive elitist-population search technique in the crossover operator
to reduce the redundancy of the population.

• Use the adaptive elitist-population search technique in the mutation operator
to increase the diversity of the population.

• Adaptively adjust the population size to optimally use the elitist individuals
to explore multiple optima.

Following these rules, the AEGA for the drug scheduling model is imple-
mented as follows:
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1. Set t = 0 and initialize a chromosome population P (t)
(uniform random initialization within the bounds);

2. Evaluate P (t) by using the fitness measure;
3. While (termination condition not satisfied) Do

a) Elitist crossover operation to generate P (t + 1);
i. check the dissimilarity of the randomly selected parents pi and pj ;
ii. if the parents pi and pj are similar, the elitist operation conserves the

better one of them for the next generation; else, according to multi-point
crossover operation, generates 6 offspring, and selects the better two from
the parents and their offspring to the next generation;

b) Elitist mutation operation to generate P (t + 1);
i. according to the one-point mutation operation, generate the offspring ci

from the parent pi;
ii. if pi and ci are dissimilar, the elitist operation conserves pi and ci together

for the next generation; else, selects the better one of them to the next
generation;

4. Evaluate P (t + 1);
5. Stop if the termination condition is satisfied; otherwise, go to Step 3.

4.5 Experimental Results Under the New Model

The drug scheduling problem were simulated using the AEGA with the fol-
lowing parameters: initial population size=2000; maximal number of genera-
tions=20000; crossover rate=1.0; mutation rate=1.0 and the distance threshold
σs=10. The drug scheduling model was simulated using numerical differentia-
tion method of Runge-Kutta [8], with a small time interval of 0.1 day for good
accuracy.

Automating the developed drug scheduling model via our multimodal opti-
mization algorithm AEGA for 50 times can consistently obtain 6 most efficient
drug scheduling policies. These results are listed in Table 3. For example, Fig.
3 and 4 show the control variable u, the best performance index x1 (inversely
related to the final mass of the tumor), the change processes of the drug con-
centration x2 and the cumulative drug toxicity x3 of the first and sixth optimal
policies. The 6 best results all satisfy the three point constraints, and therefore
it is not necessary to find the special solutions for the new model with the three
point constraints separately.

The most efficient drug scheduling policies obtained by our new model are
at least 8 times better than the best-known solution (corresponded to a final
tumor size of N = 1.53 × 104) under the previous model without the three
point constraints and at least 13 times better than the best-known solution
(corresponded to a final tumor size of N = 2.57 × 104) under the previous
model with the three point constraints. Since our modified dynamic model is
more realistic, it has provided better drug administration scheduling solutions
together with the AEGA approach used.

On the other hand, the multiple efficient drug scheduling policies under the
new model match well with the clinical experience. In the clinical treatment, gen-
erally the drug scheduling policies include two kinds: continuous and repeated.
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Table 3. The most efficient drug scheduling policies obtained by our new model

The most efficient drug scheduling policies Tumor cells
(1): {94.92,(83 × 10.8)} 20
(2): {136.98, 0, 23.35, 0, 10.88, 0, 23.37, (38 × 0, 20.86), 8.22} 34
(3): {136.98, (2 × 0), 31.5, (2 × 0), 24.5, (25 × (2 × 0), 30.41), 0, 22.65} 76
(4): {136.98, (3 × 0), 41.6, (3 × 0), 35.9, (18 × (3 × 0), 39.6), 0, 0, 25.6} 138
(5): {136.98, (4 × 0), 50.1, (4 × 0), 46.9, (14 × (4 × 0), 48.1), 0, 21.3} 269
(6): {136.98, (13 × (5 × 0), 53.277), 3 × 0, 48.76 } 1698
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Fig. 3. The first efficient drug scheduling policy under our new model.

The drug scheduling policy (1) and the drug scheduling policies (2)-(6) represent
these two kinds respectively. In some patients, the aim of treatment may be to
reduce the tumor size with minimum toxicity and the drug scheduling policy (6)
is suitable because its cumulative drug toxicity is low and often decreases to 60.
For other patients, they may be cure despite higher toxicity, the drug scheduling
policy (1) is suitable because this policy is most efficient but with high toxicity.
So these multiple efficient drug scheduling policies obtained by the new model
are more useful. According to the different conditions of the patients, the doctor
can select the suitable drug scheduling policy to treat a cancer and get the best
efficiency.
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Fig. 4. The sixth efficient drug scheduling policy under our new model.
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5 Conclusion

This paper has presented the modified optimal control model of drug scheduling
in cancer chemotherapy and how to use our adaptive elitist-population based ge-
netic algorithm (AEGA) to solve it. Working closely with an oncologist,we have
firstly modified the existing model, because the existing equation, which control
the cumulative drug toxicity x3, is not consistent with the clinical experience and
the medicine knowledge. For exploring multiple efficient drug scheduling policies,
we have used our multimodal genetic algorithm (AEGA) to solve this complex
multimodal optimization problem. We have proposed the novel variable repre-
sentation – the cycle-wise representation, for the drug scheduling policy; and
have adjusted the elitist genetic search operators in the AEGA to efficiently ex-
plore multiple efficient drug scheduling policies. The results obtained by the new
model match well with the clinical treatment experience, and can provide much
more realistic solutions than that by the previous model. Moreover, it has been
shown that the evolutionary drug scheduling approach is simple and capable of
solving complex cancer chemotherapy problems by adapting the suitable coding
and the multimodal versions of EAs.
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